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Analysis and optimal design for bars
length errors of overconstrained
deployable mechanisms'
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Abstract. For the complexity of over constrained deployable mechanism problems, a method
to analysis the bars length errors based on the complementary strain energy and the solution of
determination of the equilibrium points of mechanism in terms of the minimum complementary
strain energy are presented. In this paper, the equilibrium equations are established and the
equation of the complementary strain energy is derived for the changes of the complementary strain
energy based on over constrained parallelogram deployable mechanism. Then, the optimization
model and the corresponding constraints are established with the bars length errors as the design
variables and the sum of the complementary strain energy as the goal function. Finally, the
improved genetic algorithm is adopted to solve optimization model. The optimization results show
that this method can effectively provide a group of optimum bars length errors which can ensure
the deployment of the mechanism smooth and steady.
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1. Introduction

Deployable mechanisms, as a late-model space mechanism starting applied in
aerospace field, has been more than 30 years since the seventies. Now, it has cov-
ered various fields, from each connection part of the rocket to the satellite’s solar
panels, communication antenna, detection equipment and deployable truss of the
space station, etc., and all of them are associated with the concept of deployment
mechanisms [1].

Compared with general inerratic mechanisms, the overconstrained mechanism
has larger rigidity, and it is able to bear more loads, so it has been widely used
in space deployable mechanisms [2]. Because of over constrains existed, it caused
the deployable mechanisms was sensitive to errors (manufacturing error, thermal
deformation, initial stress, etc.), and it led to a series of harmful effects on deploy-
ment behavior. Therefore, analyzing the sensitivity of over constrains to mechanism
dimension error and then controlling the number of dimensional accuracy has im-
portant research value. Over constrained parallelogram mechanism, existing a single
bar length error, was analyzed in Literature [3], but the study, existed more bars
length errors and the optimization design of bar length errors, etc., has not been
any related literature reported, thus it caused the blindness of deployable mecha-
nism design and the blindness of bars length errors distribution. Therefore, in this
paper, based parallelogram deployable mechanism as an example, we analyzed the
relationship between mechanism complementary strain energy and deployment an-
gle deeply, and optimized the bars length errors of mechanism, so it could provide a
basis for the design of deployable mechanisms.

2. Overconstrained analysis of deployable mechanisms

As shown in Fig. 1 is an over constrained parallelogram deployable mechanism,
and it’s a common basic construction unit in space deployable mechanisms. The
mechanism exists 4 over constrains, consisting of 3 spatial-plane-over constraints
and a theoretical-plane-over constraint [4]-[6]. In these over constrains, the spatial-
plane-over constraint is sensitive to form and position errors of kinematic pair, while
the theoretical-plane-over constraint is due to the repeated bar structure BE or CF,
and it’s sensitive to bars length errors. In Fig. 1, the bar BE enhances the stiffness of
mechanism and the accuracy of deployment, so it’s required by the system to work
normally. However, unavoidable manufacturing error and thermal deformation effect
in the work will make the bar exist bars length errors. If the bar BE existed the bar
length error §, it would make the parallelogram mechanism into a structure, directly
influencing kinematic performance of deployable mechanism deployment process.
This paper mainly study the bars length errors of parallelogram deployable mecha-
nism influence on mechanism complementary strain energy, on different deployment
position.
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3. The relationship of the mechanism complementary strain
energy and bars length errors

Taking the over constrained parallelogram deployable mechanism in the Fig.1
as an example, we analyze the relationship between the bars length errors and the
complementary strain energy. First we hypothesize that the bars length errors of bar
1, 2, 3 are Iy, lo, I3, respectively, and the bar 4, 5 are ideal bars. When these bars of
existed errors are fitted together, the complementary strain energy comes into being
at the mechanism. As shown in Fig.2 is bars deformation. In Fig.2, §1, d2, d3 are
deformation of bar 1, 2, 3, respectively, and L is the ideal length. In the analysis,
first we suppose the connecting rod (horizontal bar) is a completely rigid bar, which
means FA = oo, EI = co. Next, we suppose, FA # oo, EI = oo and then we
suppose FA # oo, EI # oco. After that we solve the mechanism complementary
strain energy in each case. Last, according to the superposition principle, we add
all the mechanism complementary strain energy together [7] and we can get total
mechanism complementary strain energy.

Fig. 1. An over constrained parallelogram deployable mechanism.
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Fig. 2. An over constrained parallelogram mechanism of existed bars length errors.



660 JIANG JIE, ZHANG JUNJING, LI TUANJIE, ZHANG WENBIN

Mechanism complementary strain energy is calculated using equation

1

2
Q+2E

X 1 1 k
U :Z/5 [50P+%Q+koM+2 P? 4

2
EA 2GA M s, (1)

where, U* is the mechanism complementary strain energy. P, QJ, M are section
internal force of bars. g, 7o, ko are initial strain. FA is tensile stiffness. k/GA is
shear stiffness, and ET is flexural stiffness. Because shear has little influence on the
mechanism complementary strain energy, so in the process of calculation, we ignore
the effect of shear.

As shown in Fig.2, when the connecting rod is a completely rigid bar (EA =
00, EI = c0), we can get the following equations

> Y =Ny +Ny+N3=0, (2)
> Mp=2N; + N, =0, (3)
N1:N3:N, (4)

where Ny, N3, N3 are section internal force of bars.
The deformations of side link have the following relationship

li4+01+1s+ 3935 =2(la + 62) . (5)
Based on the mechanics of materials, section internal force of bars can be calcu-
lated as follows
~ EA6 _ EAs, _ EAG;
T Lo+h T Lo+l YT Lo+l
With Egs. (1)—(5), we can get the following expression
(2ly — 11 —13) (Lo + 12) (7)
6Lo + 11 + 4l + 13

Substituting Eq. (6) into Eq. (5), we can get the following expression of section
internal force of bars

(6)

1

8y = —2

1 EA2l -1 —13)
Nl_NS__§N2_6L0+ll+4l2+l3_N. (8)
When the connecting rod is an axial tension and compression bar (EFA # oo, EI =
00), the bar deformation of a certain position during the mechanism deployment pro-
cess of is shown in Fig.3, in which ¢ is the opening angle. Here we assume that
the axial deformation of the connecting rod is very small so that it only leads to
axial force and has no effect on the deformation of the side link. So each side link’s
deformation still meets the coordination relation.




ANALYSIS AND OPTIMAL DESIGN FOR BARS LENGTH ERRORS 661

A "B e

Fig. 3. A certain position during the deployment process of the parallelogram
mechanism.

The force on the connecting rod is shown in Fig. 4.
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Fig. 4. The forces of the connecting rod (horizontal bar).

According to the equilibrium relation, the following equation can be obtained,
where T means connecting rod’s axial force

T=Nsing. 9)

When the connecting rod is a beam structure, the connecting rod bending mo-
ment is shown in Fig. 5, and it is also assumed that the bending of the connecting
rod only affects the internal force of the connecting rod, and has no influence on rod
connected to the side link.

The bending moment in point £ can be described as follows

M = Ncos¢Ly. (10)

Substituting Egs. (8), (9), (10) into Eq. (1), the total complementary strain
energy of the mechanism can be obtained

2

N
U* = N(I3+13—2l5)+ = (6Lo+4ly+11 +134+2L¢ sin? $)

202 213
SEA N<cos*¢Ly. (11)

t5EI3
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Fig. 5. Connecting rod (horizontal bar) bending moment diagram.

Based on the strain complementary energy principle [§], Eq. (9) can be differen-
tiated as follows

ou*

ON

= (L +13—2l)+

EA I

The axial force N can be solved from Eq. (12). Substituting IV into Eq. (11), the
mechanism complementary strain energy can be obtained as follows

N 2A
+— (6L0 + 11+ 4ls + I3 + 2L sin® ¢ + 37 cos? qug) =0. (12)

EA(ly + 15 — 215)°
U* = (1+ 3 : 22) 2A __. (13)
2 (6Lo + Iy +4la + I3 + 2Lg sin® ¢ + 24 cos? pL3)

In this mechanism, if the cross-sectional area of each member bar is A = 0.15m?,
modulus of elasticity is E = 300 GPa (the material of the deployable mechanism is
carbon fiber tube), A/I = 70, Ly = 2000 mm. Giving bars length errors as follows:
Iy = 1lmm, Iy = —2mm, 3 = 1.5mm, we can get the mechanism complementary
strain energy variation curve as shown in Fig. 6 according to Eq. (13).

The mechanism complementary strain energy reflects the magnitude of the in-
ternal energy during the motion of the mechanism. The smaller the strain energy
absolute value is, the more stable the mechanism is, and the smoother the mech-
anism runs. As can be seen in Fig.6, when the mechanism is in the deployment
position, in which ¢ = 0°, complementary strain energy U* is the smallest. With
the increase of opening angle ¢, the value of complementary strain energy U* in-
creases as well, and when ¢ increases to about 85°, complementary strain energy
reaches the maximum value. This indicates that the stable equilibrium position of
the mechanism is its deployment position.

These are the method of analyzing bars length errors and the method of deter-
mining the stable equilibrium position, which are based on the complementary strain
energy.
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Fig. 6. The mechanism complementary strain energy variation curve.

4. Optimization of bars length errors

From the mechanism complementary strain energy curve, we can see that dur-
ing the deployment process, the mechanism complementary strain energy changes
greatly. The absolute value of the complementary strain energy reflects the fluency
of the mechanism’s motion. Therefore, it is necessary to optimize the bars length
errors, in order to make the mechanism deploy smooth and steady.

4.1. Mathematical model of the optimization

The mathematical model of optimal design is usually considered from three as-
pects: selecting design variables, listing the objective function and giving constraint
condition. Design variables

liy I I3
X = =(—,=,=]. 14

(I17x23m3) <L07 LO’ LO ( )
Objective function

/2

min f (X) = Y07 =

$=0
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/2
_ é EA (:L'l + X3 — 2%2)2 (15)
= 2Lo (

6 + x1 + 4z + x5 + 2sin? ¢ + %Lg? cos? ¢)

During the unfolding and folding process, each member bar is subjected to tension
compression stress, so the member bar must meet the strength criterion, which
requires the tension and compression stress of each member bar stress should not
exceed the allowable stress. The bars length errors are also limited by manufacturing
process. When the ideal rod length is 6000 mm, constraint conditions are as follows

_ Ny No N3\ _ 2B(zi+23-2%2) _ - oy
s.t. Omax = HlaX{ AP A0 A T 6+x1+4x0tx3 _S s

~0.00005 < z; < —0.00001;
(16)
0.00001 < x5 < 0.00005;

—0.00005 < z3 < —0.00001.
4.2. Solving the optimization model

Genetic algorithm is a new optimization method which is created by combining
the biological evolution principle with optimization design and computer technology.
This algorithm uses genetic arithmetic (crossover and mutation) and evolutionary
computation (selection) to improve the fitness value of individual in subsequent
generations continuously. This paper uses an improved genetic algorithm to solve
the above optimization problem [9)].

4.3. Numerical examples

As shown in Fig. 3, we choose the model in which horizontal bars’ errors are zero
to optimize, and the initial design variables are a set of values randomly selected
within the range of each bar length error. The optimal solution of the bars length
errors is: X* = (21, za, 3) = (—0.1016, 0.1009, —0.1019). The variation curve of
the mechanism complementary strain energy in the iterative process is shown in
Fig. 7.

As can be seen in Fig.7, during the deploy process, the total complementary
strain energy decreases with the increase of the number of iterations and conver-
gences to a stationary value in the end. With the bars length errors optimized, the
total complementary strain energy tends to the minimum value. It indicates that the
mechanism’s performance has been significantly improved after optimization. The
stationary and smoothness of mechanisms get significantly enhanced.
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Fig. 7. The variation curve of the objective function value in the iterative process.

5. Conclusions

1. This paper takes a kind of over constrained deployable parallelogram mecha-
nism as example, and thus gets the method of analyzing the bars length errors
based on the complementary strain energy. Although the derivation process
is carried out on the assumption that the bars length errors of the connecting
bars (horizontal bars) are the same value, this analyze method is still appli-
cable for other deployable mechanism or cases in which different bars length
error exists.

2. In order to make the mechanism deploy steady and smoothly, the bars length
errors of the mechanism is optimized with the improved genetic algorithm and
a set of optimal bars length errors is obtained, which can make the sum of
mechanism complementary strain energy be the minimum value.
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